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Abstract

We develop a single product two-stage supply contract where a retailer buys a
number of supply options from a main supplier at the beginning of the first decision
stage (first period). The retailer faces a stochastic demand concentrated in the sec-
ond stage (second period) and is modeled using a joint probability distribution with an
exogenous information. In addition, the retailer has a second supply option from a
risky supplier whose availability is modeled using a binomial distribution. At the begin-
ning of the second decision stage, the stochastic exogenous information is revealed
and the demand forecast is updated conditionally knowing the value of the exogenous
information. Moreover, at the beginning of the second decision stage, the informa-
tion about the availability or unavailability of the risky supplier becomes known with
certainty. Therefore, the supply options bought from the main supplier can be trans-
formed at the beginning of the second decision stage fully or partially into orders and
delivered immediately. Moreover, if the risky supplier is available, another quantity may
be ordered and delivered immediately from this supplier. The end customer demands
occur during the second stage and every satisfied demand is charged a certain price
by the retailer. At the end of the selling season, any remaining units are salvaged by
the retailer at a salvage value.

We model this problem using a dynamic programming approach and we exhibit
some characteristics of the structure of the optimal policy for the retailer for both avail-
able supply options. We provide the structure of the second decision stage optimal pol-
icy and some analytical insights concerning the first stage optimal policy. Furthermore,
through a numerical study, we analyze the effect of some of the model parameters on
the optimal policy especially the information quality, the probability of the availability of
the risky supplier, the difference in the costs of the two supply options and the other
economic parameters.

Keywords: inventory control, dual supply, risky supplier, options, forecast updat-
ing, short life-cycle products.
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1 Introduction
Newsvendor-type products are seasonal products with end customer demand that is con-
centrated in a short selling season. These products are usually perishable, which means
that at the end of the selling season, any remaining items are salvaged at a salvage value
that is less than the original price that is charged to the customers. Many of these prod-
ucts, especially the goods, are manufactured by an organization, the supplier, and sold
to end-customers by another organization, the retailer in a decentralized decision-making
context. Moreover, in nowadays business, decentralization is a fact in many supply chains
for different reasons. For instance, outsourcing the production to independent production
units automatically shifts the the decision making authority (Tsay, 1999). In the current
global environment, another example of decentralization may happen within the same or-
ganization where different production sites report to different functional entities, maybe
for incentive considerations. In this context, because of the manufacturing and logistics
lead-times, the replenishment decisions are made by the retailer before the beginning of
the selling season. Therefore, the replenishment decisions are made before the retailer
has an accurate estimation of the demand, which leads to the use of forecasts. The high
inaccuracy of the forecasts or the uncertain nature of the demand makes it better to use
probability distributions to model the future end customer demand. In inventory manage-
ment, the most suitable model to determine the stocking levels for this category of products
is the well known Newsvendor model (Khouja, 1999). In this single period-model, the re-
tailer orders a quantity at the beginning of the selling season at a certain unit csot, which is
delivered immediately in order to satisfy the uncertain end-customer demand. During the
selling season, any satisfied demand is charged a unit price and any unsatisfied demand
is lost and a lost sales cost is incurred. At the end of the selling season, any remain-
ing units are salvaged at a salvage value. Many extensions have been proposed in the
literature to improve the Newsvendor model (Khouja, 1999). Some of these extensions
model the problem using a two-period framework which allows the decision maker to react
to any change in the demand during the first period. Other extensions include the use
of some information updating mechanisms allowing to improve the quality of the demand
forecasts using either indigenous or exogenous information. Indigenous information may
represent information about the actual demand of the same product in previous selling
periods. Exogenous information may be collected, for instance, by sales representatives
from the distribution of sales vouchers or quotations, or in e-business from the number of
visits to a commercial website. For instance, a visit to a certain subpage, the "wish lists"
completed by the webpage visitors about products of interest, or the incomplete shopping
carts could indicate the interest of the buyer by a specific product (Cheaitou et al., 2014).

Another Newsvendor-type inventory management framework that allows a better coor-
dination between the supplier and the retailer is the supply contract. A supplier contract
is an agreement between two parties in the supply chain, usually a supplier and a retailer
or a distributer, in order to organize and optimize the production decisions of the supplier
and the replenishment decisions of the retailer. Different types of supply contracts exist in-
cluding the quantity-flexibility contracts, the backup contracts, the buy back contracts and
the option-future contracts (Cheaitou et al., 2010). The difference between these different
types of contracts lies mainly in the structure of the decision making process. Another dif-
ferentiation aspect is the degree of coordination that these contracts may result in between
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the two contracting parties of the supply chain.
In this work we propose a supply contract model in which two decision periods are con-

sidered. At the beginning of the the first period, the retailer buys from the main supplier
a number of supply options in order to satisfy end-customer demands which are concen-
trated in the second period and modeled using a probability distribution, while the infor-
mation about the availability of another secondary supplier is random and modeled using
Bernoulli distribution. At the beginning of the second period the availability of the secondary
supplier is either confirmed or not and the demand probability distribution is updated using
an exogenous information. The retailer may then transform part or the totality of the supply
options into orders which are delivered immediately. If the secondary supplier is available
then the retailer can order another quantity that is delivered immediately. At the end of the
selling season the remaining units are salvaged by the retailer.

The remaining of this paper is structured as follows. First, the pertinent literature is
reviewed which leads to develop our proposed model and define the optimization problem
and the solution approach. In the following section, we present the numerical study in
which we show the effect of some of the model parameters on the optimal policy. The last
section is dedicated to the conclusion and to future research avenues.

2 Literature review
We divide the literature related to our work into three categories: Newsvendor inventory
models with information updating, inventory models with dual sourcing and supply contract
models.

The improvement of demand forecasts using updating processes in the context of in-
ventory management has been investigated since the 1950s (Scarf, 1959; Murray and
Silver, 1966; Azoury, 1985; Lovejoy, 1990). Two classes of forecast updating models exist.
In the first class of models, an exogenous information is used to update the demand fore-
cast. In particular, Gurnani and Tang (1999) consider a two-period model with no demand
at the first period. At the end of the first period, and after a first procurement decision,
exogenous information is collected, permitting to update the initial forecast for the second
period demand. They investigate a special case in which the value of the information used
to update the demand forecast varies from worthless to perfect. They model the unit order-
ing cost of the second period using a probability distribution with a value that can be higher
or lower than the unit ordering cost at the first period. Moreover, Choi, et al. (2003) propose
a similar two-period model where the second-period demand is updated using some mar-
ket exogenous information. Yang et al. (2011) model a component-purchasing problem for
a supply chain consisting of one retailer and two complementary suppliers with different
lead-times using dynamic programming. After ordering from the long-lead-time supplier
and before ordering from the short-lead-time supplier, the retailer can update its demand
forecast for the product using a market signal. Cheaitou et al. (2014) develop a two-period
inventory management model where the demand of both periods is stochastic. At the end
of the first period, the demand of the second period is updated using exogenous informa-
tion. They include in their model two sources of supply: one fast and one slow suppliers.
The investigate the structure of the optimal policy of both periods. In the second class of
demand forecast updating models, the first period demand is used as endogenous infor-
mation to update the second period demand assuming that a correlation exists between
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the two demands. Many of the studies of this class are related to the quick response in-
ventory management policy in the apparel industry (Fisher et al., 1994; Fisher et al, 2001;
Choi et al., 2006). For example, Fisher and Raman (1996) modeled the demand of the
whole horizon and the demand of the first period using a joint probability density function.
They approximate the optimal numerically using heuristics approach. Tan et al. (2009) use
advanced demand information to solve an inventory problem with two demand classes.
Bradford and Sugrue (1990) use a Bayesian updating process to improve the quality of the
second period demand using the observed the value of the first period demand. Ma et
al.’s (2012) proposed a model in which the retailer has two ordering opportunities before
demand is realized. In their model a forecast updating process is considered. Zheng et
al. (2016) investigate an extension of the newsvendor model with demand forecast updat-
ing under supply constraints. In their model, a retailer can postpone order placement to
improve the quality of the demand forecast while shortening the supply lead time. In this
case, the supplier charges the retailer a higher cost set restrictions on the ordering times
and quantities. They include in their model two supply modes: a supply mode that has
a limited ordering time scale, and another one that has a decreasing maximum ordering
quantity. For their demand forecasting process, they use the Martingale model of forecast
evolution (MMFE).

In the category of literature that deals with the dual sourcing question, it is worth not-
ing that the pioneering work was the model developed by Daniel (1963)) that focused on
emergency shipments limited to two modes. Fukuda (1964) extended this work to include
unbound emergency shipments and general lead time values. Whittemore and Saunders
(1977) considered a general model with arbitrary lead times and identified cases in which
it is optimal to use only one supply mode. Moinzadeh and Nahmias (1988) examined
the basic dual supply problem in a continuous review setting. Zhang (1995) proposed a
periodic review system that included up to three supply modes. Lawson (1995) consid-
ered a specific form of lead-time flexibility that is formally modeled as a series of expedite
and de-expedite opportunities. More recently, Li et al. (2009) proposed a model with two
procurement opportunities with lead times where the second order timing is s decision
variable. Allon and Van Mieghem (2010) formulated a model in which two sourcing options
are available: a responsive nearshore source and a low-cost offshore source with random
demand. Boute and Mieghem (2011) analyzed a global dual sourcing policy with two sup-
pliers: a responsive and expensive supplier and a slow and less costly supplier. They
proposed a sourcing and ordering policy that allocates the order volume to both sources by
finding an optimal trade off between cost and responsiveness. Other studies investigated
the dual sourcing problem with different contexts such as minimum cumulative commit-
ment and capacity (Xu, 2011), risk management (Xanthopoulos et al., 2012; Giri, 2011),
the exponential utility of profit (Oberlaender, 2011) or lead-time reduction (Ryu and Lee,
2003). (For a detailed survey of this literature, we refer readers to Minner, 2003; Thomas
and Tyworth, 2006; Jain et al., 2011; or Cheaitou and van Delft, 2013).

The third category of related works deals with supply contracts. As mentioned earlier,
many types of supply contracts exist. The main differentiation aspect between them is the
structure of the contract itself. The first type of contracts is the backup contract (Eppen and
Iyer, 1997) that is characterized by an initial order that is made at a first decision point. At
the final decision point, part of the initial order can be canceled, up to a certain predefined
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percentage. The second type of contracts is the options-futures contract ((Barnes-Schuster
et al., 2002) and (Cachon and Lariviere, 2001)). This type of contracts is characterized by
two decision periods. In the first period two decisions are made: the number of futures
(a non-refundable and unchangeable commitment) and the number of options (a flexible
commitment). In the second period part of the totality of the prescribed options can be
transformed into orders by paying an exercise cost to the supplier. A third type of contracts
is the quantity flexibility contract ((Bassok and Anupindi, 1995) and (Tsay, 1999)) in which
an initial order is made and can later be revised within a certain range. The fourth type of
contracts to mention here is the buy-back contract (Arshinder et al., 2009): any remaining
units at the end of the selling season are returned to the supplier at a salvage value that
represents a fraction of unit ordering cost. Other types of contracts exists such as the con-
tracts with promotional efforts (Yan and Zaric, 2016), the contracts with revenue-sharing
option (Arani et al., 2016) and the contracts with multiple service levels (Protopappa-Sieke
et al., 2016).

It is worth noting that the forecast updating processes are widely used in the context of
supply contracts (see (Bassok and Anupindi, 1995), (Barnes-Schuster et al., 2002), (Eppen
and Iyer, 1997), (Tsay, 1999), and (Brown, 1999)).

To the best of our knowledge, none of the reviewed papers considered a two stage
supply contact in which an external information is used to update the second period de-
mand and two supply options are available: a main supplier with options and a secondary
risky supplier. Therefore, this work contributes to the literature by especially allowing to
investigate the effect of the existence of the risky supplier and the quality of the exogenous
information on the ordering policy.

3 Model description
We consider a single product two-stage model where a retailer orders at the beginning
of the first stage a number of options, K, at a unit price c0, from a main supplier. These
options represent capacity booking decisions that may be transformed into orders at the
beginning of the second stage in order to satisfy a stochastic demand D. This random de-
mand follows a joint probability distribution with an exogenous information ξ, that may rep-
resent some external information collected about the market during the first stage. More-
over, at the beginning of the first stage, the available information about the risky supplier
may be summarized in a Bernoulli distribution where the supplier is supposed to be avail-
able at the beginning of the second stage with a probability of u and unavailable with a
probability of 1− u.

Let ψ(ξ,D) be the joint probability density function (PDF) of the exogenous information
and the demand, and let Ψ(ξ,D) be their joint cumulative distribution function (CDF). The
marginal CDF and PDF of the information ξ are denoted as g(ξ) and G(ξ) respectively, the
conditional PDF and CDF of the demand D for any given value of ξ are f(D|ξ) and F (D|ξ)
respectively.

At the beginning of the second decision stage, the exogenous information ξ is revealed
and the demand distribution is updated conditionally to the value of ξ. Moreover, the avail-
ability of the risky supplier is either confirmed or not. The retailer can therefore transform
the options ordered at the beginning of the first stage into orders, by ordering a quantity Q1

at a unit cost of c1, where Q1 ≤ K. Moreover, if the risky supplier is available, the retailer
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has also the possibility to order an unconstrained quantity Q2 at a unit cost of c2.
Furthermore, during the selling season (second period), every satisfied end-customer

demand is charged at a price p and every unsatisfied demand is lost and a penalty shortage
cost b is incurred. At the end of selling season, any remaining units are salvaged at a
salvage value s.

4 Model assumptions
To avoid some trivial or non-realistic cases it is necessary to introduce some assumptions
for the different parameters of the model. These assumptions are listed below:

p > c0 + c1, p > c2 (1)

s < c0 + c1, s < c2 (2)

Assumptions (1) are used to avoid unrealistic cases in which the customer is charged a
price less than the ordering cost which leads to a pure loss scenario. Assumptions (2) are
used to avoid cases in which the salvage value at the end of the selling season is greater
than the ordering cost.

Furthermore, without loss of generality, we assume that the demand distribution is char-
acterized as follows: the joint probability density function of the information ξ and the de-
mand D−namely, ψ(ξ,D)−is a bivariate normal distribution with means θ and µ, standard
deviations δ and σ, and a correlation coefficient ρ. Therefore, the joint probability density
function is of the form

ψ(zξ, zD) =
e−1/2

√
1−ρ2(z2ξ+z2D−2zξzD)

2πδσ
, (3)

where

zξ =
ξ − θ

δ
and zD =

D − µ

σ
. (4)

Furthermore, we know that the conditional demand (D|ξ) is normally distributed with PDF
f(·), CDF F (·), mean µ′, and standard deviation σ′ (Bickel and Doksum, 1977), where

µ′ = µ+ ρ
(ξ − θ)σ

δ
and σ′ = σ

√
1− ρ2. (5)

It is worth noting that any probability distribution other that the bivariate normal distribu-
tion may be used. The choice of one probability distribution, instead of keeping the general
form ψ(ξ,D), is a means to develop the optimization model, as it will be shown in the next
sections.

4.1 The optimization problem
We define Πu

2(Q1, Q2|ξ) as the expected profit of the second period conditional to the
information ξ, for the case in which the risky supplier is available and Π1−u

2 (Q1|ξ) for the
case in which the risky supplier is not available. We introduce also Π1(K,Q1, Q2) as the
expected profit of the first period. These expected profits are expressed as follows:
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Πu
2(Q1, Q2|ξ) = p

∫ Q1+Q2

0

Df(D|ξ)dD + p(Q1 +Q2)

∫ ∞

Q1+Q2

f(D|ξ)dD

+ s

∫ Q1+Q2

0

(Q1 +Q2 −D)f(D|ξ)dD − c1Q1 − c2Q2 (6)

− b

∫ ∞

Q1+Q2

(D −Q1 −Q2)f(D|ξ)dD

Π1−u
2 (Q1|ξ) = p

∫ Q1

0

Df(D|ξ)dD + pQ1

∫ ∞

Q1

f(D|ξ)dD

+ s

∫ Q1

0

(Q1 −D)f(D|ξ)dD − c1Q1 (7)

− b

∫ ∞

Q1

(D −Q1)f(D|ξ)dD

Π1(K,Q1, Q2) = −c0K + Eξ[uΠ
u
2(Q1, Q2|ξ) + (1− u)Π1−u

2 (Q1|ξ)] (8)

where Eξ[·] represents the expected value with respect to the information ξ.
The optimization problem is then defined as:

max
0≤K,0≤Q1≤K,0≤Q2

Π1(K,Q1, Q2). (9)

5 The solution approach
In order to determine the optimal ordering policy, a two-stage stochastic dynamic pro-
gramming approach is adopted where the optimization problem defined in (9) is decom-
posed into two coupled subproblems. First, the second stage subproblem is formulated
and solved to determine the optimal values of the decision variable Q1 and Q2. Second,
using the optimal policy of the second stage, the first stage subproblem is formulated and
solved.

5.1 Second-period subproblem
In this section, we exhibit the solution of the second stage subproblem. Based on the
availability of the risky supplier, two possible formulations, and therefore subproblems, are
possible. The first formulation is as follows:

max
0≤Q1≤K,0≤Q2

Πu
2(Q1, Q2|ξ), (10)

and correspond to the case in which the risky supplier is available and the second formu-
lation is as follows:

max
0≤Q1≤K

Π1−u
2 (Q1|ξ), (11)
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and corresponds to the case in which the risky supplier is unavailable. We prove the
concavity of the expected objective function and then we develop the optimal ordering
policy for both cases.

5.2 Case 1: available risky supplier
Lemma 1 The objective function Πu

2(Q1, Q2|ξ) defined in (6) is a jointly concave function
with respect to Q1 and Q2.

Proof 1 The Hessian of Πu
2(Q1, Q2|ξ) with respect to Q1 and Q2 is given by

∇2Πu
2(Q1, Q2|ξ) = −(p+ b− s)f(Q1 +Q2|ξ)

[
1 1
1 1

]
.

For each vector
V = (V1;V2)

where (V1;V2) ∈ IR2, we find

V T∇2Πu
2(Q1, Q2|ξ)V = −(p+ b− s)f(Q1 +Q2)(V1 + V2)

2.

By assumption (2), one has s < p which means that (p+ b− s) > 0. Hence, we have

V T∇2Πu
2(Q1, Q2|ξ)V ≤ 0

which proves that the matrix ∇2Πu
2(Q1, Q2|ξ) is semi-definite negative. Consequently, the

objective function Πu
2(Q1, Q2|ξ) is jointly concave with respect to Q1 and Q2, which com-

pletes the proof. 2

Consider the two partial derivatives of Πu
2(Q1, Q2|ξ) with respect toQ1 andQ2, respectively,

given by
∂Πu

2

Q1

= (p− c1 + b)− (p+ b− s)F (Q1 +Q2|ξ) (12)

and
∂Πu

2

Q2

= (p− c2 + b)− (p+ b− s)F (Q1 +Q2|ξ) (13)

Setting the first partial derivatives (12) and (13) equal to zero, we obtain

F (Q1 +Q2|ξ) =
p− c1 + b

p− s+ b
(14)

F (Q1 +Q2|ξ) =
p− c2 + b

p− s+ b
(15)
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Hence, two threshold levels appear to be of great importance in the second period optimal
policy characterization,

Y1(ξ) = F−1

(
p− c1 + b

p− s+ b
|ξ

)
(16)

Y2(ξ) = F−1

(
p− c2 + b

p− s+ b
|ξ

)
(17)

Taking into account the bivariate joint normal distribution of the demand and the infor-
mation as it was detailed in (3)-(5), and for a given value if the information ξ, the thresholds
can be rewritten as follows:

Y1(ξ) = µ+ (ξ − θ)
σ

δ
ρ+ (σ

√
1− ρ2)Φ−1

(
p− c1 + b

p− s+ b

)
, (18)

and

Y2(ξ) = µ+ (ξ − θ)
σ

δ
ρ+ (σ

√
1− ρ2)Φ−1

(
p− c2 + b

p− s+ b

)
. (19)

5.2.1 Structure of the optimal policy

In order to develop the optimal policy of the second period, we distinguish between two
cases: c1 < c2 and c1 > c2.

Case 1.a: c1 < c2

Case 1.a.1: K < Y2(ξ)

Lemma 2 For K < Y2(ξ), the optimal solution is given by

Q∗
1 = K and Q∗

2 = Y2(ξ)−K.

Proof 2 For K < Y2(ξ), one finds

∂Πu
2

∂Q1

(Q∗
1 = K,Q∗

2 = Y2(ξ)−K) = (p− c1 + b)− (p− s+ b)F (K + Y2(ξ)−K|ξ)

= (p− c1 + b)− (p− s+ b)F (Y2(ξ)|ξ)

= (p− c1 + b)− (p− s+ b)
p− c2 + b

p− s+ b
= c2 − c1 > 0 (20)
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and

∂Πu
2

∂Q2

(Q∗
1 = K,Q∗

2 = Y2(ξ)−K) = (p− c2 + b)− (p− s+ b)F (K + Y2(ξ)−K|ξ)

= (p− c2 + b)− (p− s+ b)F (Y2(ξ)|ξ)

= (p− c2 + b)− (p− s+ b)
p− c2 + b

p− s+ b
= 0 (21)

which induces, by concavity, that the solution Q∗
1 = K and Q∗

2 = Y2(ξ)−K is the optimum
of the profit function for such K values. 2

Case 1.a.2: Y2(ξ) < K < Y1(ξ)

Lemma 3 For Y2(ξ) < K < Y1(ξ), the optimal solution is given by

Q∗
1 = K and Q∗

2 = 0.

Proof 3 For Y2(ξ) < K < Y1(ξ), one finds from the monotonicity of F (.)

∂Πu
2

∂Q1

(Q∗
1 = K,Q∗

2 = 0) = (p− c1 + b)− (p− s+ b)F (K) > 0 (22)

and

∂Πu
2

∂Q2

(Q∗
1 = K,Q∗

2 = 0) = (p− c2 + b)− (p− s+ b)F (K) < 0. (23)

Since Q1 < K and Q2 > 0, we deduce, by concavity, that the solution Q∗
1 = K and Q∗

2 = 0
is the optimum of the profit function. 2

Case 1.a.3: K > Y1(ξ)

Lemma 4 For K > Y1(ξ), the optimal solution is given by

Q∗
1 = Y1(ξ) and Q∗

2 = 0.

Proof 4 For K > Y1(ξ), one finds

∂Πu
2

∂Q1

(Q∗
1 = Y1(ξ), Q

∗
2 = 0) = (p− c1 + b)− (p− s+ b)F (Y1(ξ)) = 0 (24)

and

∂Πu
2

∂Q2

(Q∗
1 = Y1(ξ), Q

∗
2 = 0) = (p− c2 + b)− (p− s+ b)F (Y1(ξ))

= (p− c2 + b)− (p− s+ b)
p− c1 + b

p− s+ b
(25)

= c1 − c2 < 0.
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Thus, we deduce, by concavity, that the solution Q∗
1 = Y1(ξ) and Q∗

2 = 0 is the optimum of
the profit function. 2

Case 1.b: c1 > c2
Case 1.b.1: K < Y1(ξ)

Lemma 5 For K < Y1(ξ), the optimal solution is given by

Q∗
1 = 0 and Q∗

2 = Y2(ξ).

Proof 5 For K < Y1(ξ), one finds

∂Πu
2

∂Q1

(Q∗
1 = 0, Q∗

2 = Y2(ξ)) = (p− c1 + b)− (p− s+ b)F (Y2(ξ)|ξ)

= (p− c1 + b)− (p− s+ b)F (Y1(ξ)|ξ)

= (p− c1 + b)− (p− s+ b)
p− c2 + b

p− s+ b
= c2 − c1 < 0 (26)

and

∂Πu
2

∂Q2

(Q∗
1 = 0, Q∗

2 = Y2(ξ)) = (p− c2 + b)− (p− s+ b)F (Y2(ξ)|ξ)

= (p− c2 + b)− (p− s+ b)F (Y2(ξ)|ξ)

= (p− c2 + b)− (p− s+ b)
p− c2 + b

p− s+ b
= 0 (27)

which induces, by concavity, that the solution Q∗
1 = 0 and Q∗

2 = Y2(ξ) is the optimum of the
profit function for such K values. 2

Case 1.b.2: Y1(ξ) < K < Y2(ξ)

Lemma 6 For Y1(ξ) < K < Y2(ξ), the optimal solution is given by

Q∗
1 = 0 and Q∗

2 = Y2(ξ).

Proof 6 For Y1(ξ) < K < Y2(ξ), one finds

∂Πu
2

∂Q1

(Q∗
1 = 0, Q∗

2 = Y2(ξ)) = (p− c1 + b)− (p− s+ b)F (Y2(ξ)|ξ)

= c2 − c1 < 0 (28)

and

∂Πu
2

∂Q2

(Q∗
1 = 0, Q∗

2 = Y2(ξ)) = (p− c2 + b)− (p− s+ b)F (Y2(ξ)) = 0. (29)
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We deduce, by concavity, that the solution Q∗
1 = 0 and Q∗

2 = Y2(ξ) is the optimum of the
profit function. 2

Case 1.b.3: K > Y2(ξ)

Lemma 7 For K > Y2(ξ), the optimal solution is given by

Q∗
1 = 0 and Q∗

2 = Y2(ξ).

Proof 7 For K > Y2(ξ), one finds

∂Πu
2

∂Q1

(Q∗
1 = 0, Q∗

2 = Y2(ξ)) = (p− c1 + b)− (p− s+ b)F (Y2(ξ)) < 0 (30)

and

∂Πu
2

∂Q2

(Q∗
1 = 0, Q∗

2 = Y2(ξ)) = (p− c2 + b)− (p− s+ b)F (Y2(ξ)) = 0. (31)

Thus, we deduce, by concavity, that the solution Q∗
1 = 0 and Q∗

2 = Y2(ξ) is the optimum of
the profit function. 2

As a conclusion on the optimal ordering policy of the retailer,if c1 < c2, the retailer uses
only the main supplier except when the number of options K verifies K < Y2(ξ); in fact, in
this case, the retailer orders from both the main supplier and the risky supplier. In addition,
if c2 < c1, the risky supplier will be the only source of supply.

5.3 Case 2: unavailable risky supplier
Lemma 8 The objective function Π1−u

2 (Q1|ξ) defined in (7) is a jointly concave function
with respect to Q1.

Proof 8 The Hessian of Π1−u
2 (Q1|ξ) with respect to Q1 is given by

∇2Πu
2(Q1|ξ) = −(p+ b− s)f(Q1)

[
1 1
1 1

]
.

For each vector
V = (V1;V2)

where (V1 ;V2) ∈ R2, we find using assumption (2)

V T∇2Π1−u
2 (Q1|ξ)V = −(p+ b− s)f(Q1)(V1 + V2)

2 ≤ 0

which proves that the matrix ∇2Π1−u
2 (Q1, Q2|ξ) is semi-definite negative. Consequently,

the objective function Π1−u
2 (Q1|ξ) is jointly concave with respect to Q1. 2

5.3.1 Structure of the optimal policy

Lemma 9 For K > Y1(ξ), the optimal solution is given by

Q∗
1 = Y1(ξ).

12



Proof 9 Setting the partial derivative of Π1−u
2 (Q1) with respect to Q1 equal to zero yields

F (Q1|ξ) =
p− c1 + b

p− s+ b
= 0.

Thus, for K > Y1(ξ), the optimal solution is given by

Q∗
1 = F−1

(
p− c1 + b

p− s+ b

)
.

which completes the proof. 2

Lemma 10 For K < Y1(ξ), the optimal solution is given by

Q∗
1 = K.

Proof 10 The partial derivative of Π1−u
2 (Q1) with respect to Q1 is given by

∂Π1−u
2

∂Q1

(Q1) = (p− c1 + b)− (p+ b− s)F (Q1)

Hence, since K < Y1(ξ), it yields using the monotonicity of F (.) that

∂Π1−u
2

∂Q1

(Q∗
1 = K) = (p− c1 + b)− (p+ b− s)F (K) > 0.

Thus, Q∗
1 = K is the optimum of the profit function. 2

5.4 First-period subproblem
The second period optimal policy that was obtained earlier will be used to solve the first
period subproblem, which can be obtained by substituting the decision variables Q1 and
Q2 by their respective optimal values Q∗

1 and Q∗
2 in the optimization problem defined in (9)

which leads to:

max
0≤K

Π1(K,Q
∗
1, Q

∗
2). (32)

where

13



Π1(K,Q
∗
1, Q

∗
2) = − c0K +

∫ K δ
ρσ

−α1

0

p∫ Y1(ξ)

0

Df(D|ξ)dD − c1Y1(ξ) (33)

+ pY1(ξ)

∫ ∞

Y1(ξ)

f(D|ξ)dD + s

∫ Y1(ξ)

0

(Y1(ξ)−D) f(D|ξ)dD

− b

∫ ∞

Y1(ξ)

(D − Y1(ξ))f(D|ξ)dD

 g(ξ)dξ

+ u

∫ K δ
ρσ

−α2

K δ
ρσ

−α1

p∫ K

0

Df(D|ξ)dD + pK

∫ ∞

K

f(D|ξ)dD

+ s

∫ K

0

(K −D) f(D|ξ)dD − b

∫ ∞

K

(D −K)f(D|ξ)dD − c1K

)
g(ξ)dξ

+

∫ ∞

K δ
ρσ

−α2

p∫ Y2(ξ)

0

Df(D|ξ)dD + pY2(ξ)

∫ ∞

Y2(ξ)

f(D|ξ)dD

+ s

∫ Y2(ξ)

0

(Y2(ξ)−D) f(D|ξ)dD − c1K − c2(Y2(ξ)−K)

− b

∫ ∞

Y2(ξ)

(D − Y2(ξ))f(D|ξ)dD

 g(ξ)dξ



+ (1− u)

∫ ∞

K δ
ρσ

−α1

p ∫ K

0

Df(D|ξ)dD + pK

∫ ∞

K

f(D|ξ)dD

+ s

∫ K

0

(K −D) f(D|ξ)dD − b

∫ ∞

K

(D −K)f(D|ξ)dD − c1K

)
g(ξ)dξ


where

α1 =
µδ

σρ
+
δ

ρ

√
1− ρ2Φ−1

(
p− c1 + b

p− s+ b

)
− θ, (34)

and

α2 =
µδ

σρ
+
δ

ρ

√
1− ρ2Φ−1

(
p− c2 + b

p− s+ b

)
− θ, (35)
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Lemma 11 labelfirstperiodobjconcavlemma The first period expected objective function
defined in (33) is concave with respect to the decision variable K.

Using the concavity of the first period optimal policy, the optimization model defined in
(32) and (33) will be solved numerically using the numerical optimization function NMaxi-
mize of the software Mathematica 10.2 on a Windows 7 Entreprise 64-bit platform equipped
with an Intel Core i7-4810MQ 2.8GHz 2.8GHz CPU and 16 GB of RAM. The results are
reported in Section ??.

6 A special case: the perfect information setting
In this section, we develop the optimal policy when the correlation between exogenous
information and demand is perfect (i.e. ρ = 1). The other special case whereby ρ = 0 is
obvious and will be discussed in numerical analysis.

When ρ = 1 , the conditional demand distribution becomes deterministic where the
conditional demand value is equal to D|ξ = µ+ (ξ−θ)σ

δ
. The thresholds defined in (18) and

(19) become as follows:

Y1(ξ) = Y2(ξ) = µ+ (ξ − θ)
σ

δ
. (36)

It is worth noting that D|ξ = Y1(ξ). It is also worth noting that α1 becomes equal to α2.

6.1 Second period optimal policy
The second period optimal policy has been completely characterized in Section 5.

Therefore, for the perfect information case and for the values of ξ < K δ
ρσ

−α1 one has
D|ξ < K which means that, for the second period optimal policy, three cases are to be
considered:

• the risky supplier is available:

– if c1 < c2, then Q∗
1 = D|ξ and Q∗

2 = 0

– if c1 > c2, then Q∗
1 = 0 and Q∗

2 = D|ξ

• the risky supplier is unavailable:

– Q∗
1 = D|ξ and Q∗

2 = 0

For the values of ξ > K δ
ρσ

− α1 one has D|ξ > K which means that, for the second
period optimal policy, three cases are also to be considered:

• the risky supplier is available:

– if c1 < c2, then Q∗
1 = K and Q∗

2 = D|ξ −K

– if c1 > c2, then Q∗
1 = 0 and Q∗

2 = D|ξ

• the risky supplier is unavailable:

– Q∗
1 = K and Q∗

2 = 0

15



6.2 First period optimal policy
For the first period, by rearranging the terms and using Equation (36), the expected objec-
tive function defined in (33) becomes as follows:

Π1(K,Q
∗
1, Q

∗
2) = (37)

− c0K +

∫ δ(K−µ)
ρσ

+θ

0

p ∫ Y1(ξ)

0

Y1(ξ) f(D|ξ)dD − c1Y1(ξ) + pY1(ξ)

∫ ∞

Y1(ξ)

f(D|ξ)dD

 g(ξ)dξ

+ (1− u)

∫ ∞

δ(K−µ)
ρσ

+θ

(p− s+ b)

∫ K

0

(Y1(ξ)−K) f(D|ξ)dD + (p− c1 + b)K − bµ

g(ξ)dξ
7 Conclusion
In this paper we developed a two-period mathematical model for supply contract design
with options and demand forecast updating that governs the ordering process of a retailer
from two suppliers: a main supplier and a secondary risky supplier. A certain number of
options are ordered from the main supplier at the beginning of the first period and can be
transformed into orders at the beginning of the second period. The retailer has to satisfy
a stochastic end-customer demand that is concentrated in the second period. During the
first period, an exogenous information is collected and used to update the demand fore-
cast at the beginning of the second period. Moreover, the availability of the risky supplier is
modeled using Bernoulli distribution. At the beginning of the second period, the availability
of this supplier is either confirmed or not. If the risky supplier turns out to be available, then
an unconstrained quantity may be ordered from this supplier. Any satisfied end-customer
demand is charged a unit price and any unsatisfied demand is lost and a penalty short-
age cost is incurred. At the end of the selling season any remaining units are salvaged at
a salvage value. We modeled this problem using stochastic dynamic programming. We
obtained the optimal ordering policy of the retailer for the second period and we showed
that the first period objective function is concave with respect to the number of options. We
studied a special case in which the quality of the exogenous information is perfect which
means that the correlation between the exogenous information and the demand is com-
plete. We presented some numerical applications that focused on the effect of some of the
model parameters on the optimal policy and the objective function. Characterizing analyt-
ically the first period optimal policy or considering stochastic costs for the risky supplier in
the second period may be avenues for future research.
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